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ABSTRACT 
Navigation planning is one of the most vital aspects of an auto- 

nomous mobile robot. The problem of navigation in a completely 
known obstacle terrain is solved in many  cases.  Comparatively less 
number of research results are reported in literature about robot navi- 
gation in a completely unknown obstacle terrain. In recent times, 
this problem is solved by imparting the learning capability to the 
robot. The robot explores the obstacles terrain  using sensors and 
incrementally builds the terrain model.  As  the  robot  keeps  navigat- 
ing, the terrain model becomes more learned and  the usage of sen- 
sors is reduced. The navigation paths  are  computed  by  making  use of 
the existing terrain model. The navigation  paths  gradually approach 
global optimality as the learning proceeds. In this paper, we present 
concurrent algorithms for an autonomous robot navigation in an 
Unexplored  terrain. These concurrent algorithms are  proven  to be 
free from deadlocks and starvation. The performance of the con- 
current algorithms is analyzed in terms  of  the  planning time, travel 
time, scanning time, and update time. The analysis reveals the need 
for an efiicient data structure for the obstacle terrain in order to 
reduce the navigation time of the robot, and  also to incorporate leam- 
ing. The modified  adjacency list is proposed  as  a data structure for 
the spatial graph that represents the obstacle terrain. The time com- 
plexities of various algorithms that access,  maintain,  and update the 
spatial graph are estimated, and  the effectiveness of  the  the imple- 
mentation is illustrated. 

1. INTRODUCTION 
Robotics is one of the most actively  researched mas of com- 

puter science. It is replete with issues ranging  from abstract 
mathematical problems  to  highly  pragmatic  ones. In many  applica- 
tions that involve monotonous and tedious tasks,  (e.g.  normal 
maintenance or inspection) it would  be desirable to  employ  robots. 
In addition, hazardous environments such as the ocean, nuclear reac- 
tom,  battlefields, etc. require operations that might be safely  and 
efficiently carried out by autonomous  mobile  robots. Tasks requiring 
rapid responses in emergency situations are also  appropriate for 
intelligent machines. An  autonomous  mobile  robot  may  be charac- 
terized as a machine capable of motion  planning, execution and 
leaming. There have been numerous efforts to design automated 
mobile robots. Examples are  SHAKEY of Nilsson [ H I ,  the P L  
robot of Thompson [ 191, HILARE of Giralt et al[8], the  CMU Rover 
of Moravec 1171, and HERMIES of Weisbin et al [22], etc. Some of 
the most important research areas in robotics are knowledge 
representation, task planning, sensor interpretation, dynamics  and 
control, architectures for robot computer systems, algorithms for 
concurrent computation, coordinated manipulation  and navigation, 
etc. 

One of the key  problems in the design of an autonomous 
mobile robot is the navigation planning. The problem of navigation 
planning in a  'known' terrain involves finding collision-free (possi- 
bly, optimal) paths through a terrain that is arbitrarily populated with 
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obstacles. This problem has been the focus of much research in 
recent  times,  and has been solved in many  cases. For a broader treat- 
ment on this see [2,3,6,9,14,15,21]. The techniques for navigation 
described in these papers generally assume that a complete global 
model of the obstacle laden environment is known. Most of these 
techniques model the obstacles and the free space as precise 
mathematical  and geometric entities. For a robot navigating in a 
new or unexplored terrain, these  techniques are not directly applica- 
ble or extendible. There has not been as much work  reported in the 
literature with respect to robot navigation in an unexplored terrain. 
This can be attributed at least in part to  the lack of global informa- 
tion about the obstacles and their locations. This makes the global 
optimality of the  collision-free  paths difficult to achieve.  Many  of 
the existing solutions to this problem are based on sensor informa- 
tion [5,8,17,191, and in general do not achieve global optimality for 
the navigation paths.  Recently, Iyengar et al  [10,11] have developed 
a  technique for navigation planning. This technique is based on 
learning and requires no initial terrain model. The terrain model is 
gradually built by consolidating the information about the obstacles 
as newer paths are traversed. The global optimality of the paths is 
gradually achieved as the learning proceeds. 

In this paper, we  shall discuss concurrent navigation algorithms 
well-suited for implementation in the forthcoming generation of 
intelligent mobile robots. These concurrent algorithms implement 
the various activities of an autonomous mobiiie robot in a  well 
coordinated manner. An efficient implementation of these algo- 
rithms calls for a data structure to store the obstacle terrain This 
data structure should guarantee efficient access in implementing the 
path planning  and learning activities of the robot. We propose and 
analyze a  'modified  adjacency list' data structure for the terrain 
model. 

The organization of the paper is as follows: Section 2 reviews 
navigation by  learned spatial graph techniques. Section 3 develops 
the concurrent algorithms for robot navigation corresponding to 
methods  proposed in section 2. In section 4, the performance of the 
concurrent algorithms is analyzed. Section 5 describes an abstract 
data srrucmre for the terrain model. Included in this section are the 
implementation and analysis of  the  proposed data structure. 

2. THE NAVIGATION TECHNIQUE 
The robot navigation problem considered in this paper can be 

defined as follows: Initially, the robot is placed in an unexplored  ter- 
rain that is arbitrarily cluttered with  obstacles. The robot is required 
to autonomously perform  a number of goal direckd traversals. Only 
the gross platform motion in two dimensions is considered. Without 
loss of generality the robot is assumed to be a  point in the plane 
formed by the obstacle terrain. This is not a severe restriction for the 
method, as path planning for a finite sized robot involves 'enlarging' 
the obstacle-size to account for the actual robot dimension. as 
described  by Lozano-Perez and  Wesley [15]. Navigation in an unex- 
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plored terrain is significantly different from the problem  addressed 
by Brooks [2], Brooks and Lozano-Perez [31, Crowley [6], Gouzenes 
[9], Lozano-Perez[l4], Lozano-Perez and Wesley [E], Moravec 
1171, and  Udupa  [21], as no initial terrain model is available in our 
case. In  the technique developed by Iyengar et a1 [10,11],  the terrain 
model is gradually built by the robot as it traverses  newer  paths. At 
any intermediate point of time, the partially built terrain model is 
used in planning the required path of  navigation. The terrain model 
is updated by integrating the sensor information obtained during the 
execution of current traversal. As a  result  of this incremental leam- 
ing, the global optimality of navigation paths is gradually 
approached. In this respect, the approach of [lO,ll] is also different 
from the sensor based methods of  Moravec [171, Thompson [191, 
Giralt, Sobek, and Chatila [SI,  and  Chattergy [5] which are not expli- 
citly directed towards global optimality in navigation planning. 

The capability to learn about the obstacle terrain is vital to an 
autonomous  mobile robot navigating in  an unexplored or partially 
explored terrain.  Crowley  [6],  Laumond  [12],  and Turchen and 
Wong  [20] use different forms of learning in the design of robot  sys- 
tems.  In this section, we  summarize the robot navigation  method of 
Iyengar et  al[10,11] which is based on a different implementation of 
learning.  In  [10,11], learing is incidental meaning that the r o b o t  
explores only  the  regions that lie on the paths of navigation. The 
process of navigation operates in two basic modes - local navigation 
and global navigation. The obstacles are avoided in a localized 
manner using the sensor information in the local navigation  mode. 
The global navigation mode consists of two components: (a) path 
planning using the partially built terrain model, (b) learning by 
integrating the information extracted from sensor readings.  Initially, 
the paths are planned and traversed in local navigation mode  based 
on the sensor readings only. These paths of  navigation partition the 
obstacle terrain into a set of  polygons. In the global  navigation  mode 
these  polygons are accessed  and  manipulated in path  planning  and 
learning. The learning incorporated in this method enables the paths 
to approach global optimality as as the robot  makes succesive jour- 
neys. This is a  veIy  significant factor in applications wherein  the  ter- 
rain model is completely  unknown or only  partially  known.  Gen- 
erally, in such applications the sensor based  approahes are followed 
for path planning  [8,17,19]. But, the approach of [10,11] is more 
efficient than the pure sensor based  approaches in a  general case, 
because as the navigation continues (a) sensor is used  to  a lesser 
extent, (b) the  paths approach global  optimality. In the  remainder  of 
this section we  briefly discuss the navigation technique of [10,11], 
and more detailed treatment can be found in those papers. 

In the local navi ation mode,  the  robot scans the obstacle ter- 
rain  around  the line S d joining the source point S to the destination 
point D . Then we compute two points of inflection ( on either side 
of the line Sa) such that  the scanner view is blocked by  an obstacle 
within these two points. The robot travels to one of  the  two  points in 
a such way that the distance traversed in a direction perpendicular to 
and opposite to Ss is minimized. The same  strategy is applied  recur- 
sively from this intermediate point. The paths  traversed in this mode 
are optimal only in a localized manner in terms of the distance 
traversed by the  robot. In general this technique is not  guaranteed to 
yeild a  globally  optimal  path. 

The initial paths are traversed in local navigation  mode,  and 
these paths partition the obstacle terrain into a set of polygons. Thus 
the two-dimensional plane of the obstacle terrain is represented as set 
of non-intersecting polygons that cover the entire navigation area. 
The edges of the polygons correspond to the paths  previously 
traversed by the robot.  A free-polygon represents an obstacle-free 
region.  An unexplored-polygon represents  a  region  whose interior is 
not explored by the sensor.  A  polygon p is an obstacle-polygon with 

respect to v , a  vertex or a point on the edge, if the entire wan range 
of the sensor ( inside p is obstructed by the obstacle(s) contained 
in p when the sensor is located at vertex v .  A  traversal from the 
source point S to the destination point D consists of a series of 
stoppoints; in between two adjacent stoppoints the  robot travels in 
straight lines. For a given source point S and destination point D , 
we  find S * and D * to be the vertices of polygons  nearest to S and D 
respectively. The navigation from S to S * and from D * to D is car- 
ried out in the local navigation mode. The navigation from S *  to 
D * is canid out in the global navigation mode. 

Fig. 1 Unexplored obstacle ttnain 

The global navigation  mode can be  described as follows: Let p 
be a polygo2 with S' as a vertex and  containing the end portion of 
the line S *D 'dowards S' . We call this  polygon to be the near- 
polygon of S*D*. If p is a  free-polygon  then  the rokot directly 
traverses to the intersection point X of p with the line S ' D  *. I f p  is 
an obstacle-polygon then the edges of p are accessed in the clock- 
wise direction, starting from S * ,  to obtain  a  point X such that+the 
near-polygon of XL? is different from the  near-polygon of S'D *. 
Such point is computed treversing in the anti-clockwise directions 
from S * along the edges of p . Among  the two points  computed,  the 
point  nearest  to S * is chosen as Y .  Then navigation from Y to D * is 
recursively  carried out in global navigation mode. If p is an 
unexplored-polygon then its interior is scanned from the  vertex S * . 
Based on the sensor information p is decomposed into obstacle- 
polygons  and obstacle free regions. The obstacle regions are decom- 
posed into free-polygons. Then adjacent free-polygons are merged 
to form bigger free-poly&ons.  After this decomposition  process  the 
new near-polygon of S * D * is either an obstacle-polygon or a free- 
polygon, and the cases described  above are applicable. 

A summary of the results of this navigation  technique is as fol- 
lows (see [10,1 I] for details) : As learning proceeds, 

a) Capability for efficient navigation  planning evolves from 
local optimality to  global  optimality. 
b) The polygons that bound obstacles shrink in area and as a 
result enclose the obstacles more tightly. 
c) The free-polygons are generated to  be  convex  and  they  grow 
in size. 
d) The frequency of taking sensor readings  decreases. 
e) The problem solution becomes computational  instead  of sen- 
sor based. 
We now illustrate the navigation technique  using an example 

of rectangular terrain.  Fig.  1 shows an unexplored  terrain  containing 
four obstacles 0 1,02,0 3,and 0 4 .  Consider the navigation  of  the 
robot from S 1 to 0 4  in local navigation  mode. Seven traversals are 
undertaken from the source points S ID 1,s 2 p  2,s 3 p  3,and S 4 to the 

1138 



4 

Fig. 2 Obstacle terrain explored in local navigation mode 

destination points D 1+S2,D2,S3,D3+S41 and D4 respectively. As a 
result, the obstacle terrain is partitioned into a set of polygons as 
shown in Fig. 2. The polygons formed until this stage are designated 
as unexplored-polygons. Consider the navigation from S to D in the 
global navigation mode. The robot travels from S to S* in local 
navigation mode. The polygon p 2 of Fig.2 is  is scanned from S * 
and decomposed into free-polygons p21,pu and obstacle-polygon 
p 22. Then robot traverses to S 5 and explores the region p 4 of  Fig.2. 
As a result, p 4 is decomposed into the free-polygons p 41,p 43 and 
obstacle-polygon p42 as shown in fig3. Then the  robot  traverses 
directly across the free-polygon p 41 to D * . Then D is reached in the 
local navigation mode. The exact path of navigation is denoted by 
dotted lines in Fig.3. Observe that the obstacle 0 2 and 0 4 are more 

4 

s3 s2 
Fig. 3 Navigation from S to D in global navigation  mode 

tightly bounded by the polygons after this traversal. Any traversal 
across the polygons p 3 and p 43 will combine them  to  form  a single 
large free-polygon. For more details on this method see [10,11]. In 
the following section, we  propose  a  model of concurrent computa- 
tion for this robot navigation system. 

3. CONCURRENT PROCESS  MODEL  FOR ROBOT NAM- 
GATION 

The navigation of an autonomous robot is determined by vari- 
ous mechanical and control operations such as moving, sensing, 
stopping, starting, etc. The computer system for the robot  should 
coordinate all these operations, apart from carrying out the computa- 
tions. A close inspection of various activities involved in the naviga- 
tion of  a robot reveals that certain constituent operations can be car- 
ried out concurrently. Exploitation of  concurrency in these opera- 
tions decreases the over-all journey time  of  any  traversal. In this sec- 
tion, we examine the navigation process  with  a  view to find out the 
exact operations that can be canied out concurrently. 

The robot is assumed to have two systems,  a control computing 
system and  a pfunning computing system. This abstract model is 
analogous to robots which have an on-board computer for controlling 
the motion and sensor operations, and another on-board computer 
for carrying out planning and  world  modelling  [10,11,22]. Though 
the treatnient here is based on the robot HEWIES-II[10,11,22],  it is 
equally applicable for many other robot systems. The control system 
moves the robot from a source point to a destination point. It 
operates the sensors to scan the specified  regions and returns the 
information to the planning system. The planning system accesses 
the terrain model to plan the next stop points and returns them to the 
control system. It also incorporates learning into the obstacle terrain 
by integrating the information about the explored polygons. A queue 
is utilized by the planning system to return the stop points to the con- 
trol system. A buffer is utilized  by the control system to return the 
information about the explored polygons to the planning system. 
The configuration of the system is shown in Fig. 4. 

QUEUE OF 
STOP POINTS 

i l  CONTROL 
COMPUTING 
SYSTEM 

COMPUTING 
SYSTEM 

t 

Fig. 4 Configuration of the computing system of the robot 

The operation of the computer system for the robot is charac- 
terized as the concumnt processes PLANNING and  CONTROL. 
The main function of the algorithmic processes PLANNING and 
CONTROL is to implement the navigation &que as a coordi- 
nated activity between the control and the planning computing sys- 
tems. The planning computer computes the intermediate stop pints  
and enters them into the queue for the control computer to  pick up. 
If the next polygon is unexplored then process PLANNING process 

~~ ~~ 

process CONTROL; 

begin 
1. while (destination is being reached) do 

2. while (queue is empty) do stop and  wait; 
3. get the next entry  from the queue; 
4. if (entry is * ) 
5. then stop, explore and  return  the information to the buffer; 
6. else . 

I1 This process controls various mechanical actions I/ 

begin 

begin 
7. goto the next stop point; 
8. if (stop point has been overwritten 

to allow continued straight line motion) 
9. then goto to the new stop point without stopping 

and changing the direction; 
end; 

end; 
end; 
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enters * into the queue as in line 16. The process CONTROL process 
picks * from the queue, scans the polygon and returns the informa- 
tion via the buffer as in the lines 4 and 5 of  process CONTROL. The 
process PLANNING waits at this point as per line 17 of process 
PLANNING. The obstacle terrain model is updated in line 18 of pro- 
cess PLANNING. 

process PLANNING; 
// This process carries out the computations / I  
begin 

1. last-stop t source point; 
2. while (destination is not reached) do 

begin 
3. 

4. 
5. 

6. 
7. 
8. 
9. 

18. 

11. 

12. 
13. 
14. 

15. 

16. 
17. 
1s. 
19. 

.., 
find the near-polygonp , of the line from the 

last-stop point to the destination point; 
if @ is a free-polygon) 
then 
begin 

compute the next stop point, s ; 
if (previous polygon is €ree-polygon ) 
then overwrite the latest stop point  with s ; 
else enter the stop point into the queue; 

end 
else if ( p  is an obstacle-polygon with respect  to 

the latest stop point in the queue) 
then 

begin 
compute the next stop point; 
compute the shorter path  along  edges ofp ; 
enter into the queue, in order, all the  vertices 

o f p  on the shorter path; 
end; 

eke 
begin 

enter into the queue * and  the  range  of scan; 
if (buffer is empty) then wait; 
update the model; 
last-stop c last stop point; 

en& 
end; 

cad; 

Tie robot stops to take the correspnding sensor peadings, if 
required, as indicated in line 5 of  process CONTROL. As indicated 
in line 2 of  process CONTROL the robot stops and waits if the next 
stop point is not already  computed  and  entered into the queue (by 
process PLANNING). Since stopping and starting at the  next stop- 
point involves a considerable amount  of  time, faster computation of 
the next stop-point would eliminate considerable time  delay. How- 
ever, the execution of step 7 of process CONTROL often involves a 
change in the direction of motion. 

if the polygon which the robot is cumndy traversing and the 
next  polygon in sequence are both free-polygons, ?hen the  robot can 
continue to travel straight without sEopping and without  a change in 
direction. 'Kis is possible  oniy if the planning computer computes 
the next stop-point before the robot reaches the last stop-point. In 
the cases where it is possible, the  process PLANNING overwrites the 
latest stop-point as in line 8 of process PL4NNING. This infomu- 
fion is utilized by process CONTROL to continue travel in the same 
dixction (as given in lines 8 and 9 in process CONTROL). As in the 
earlier case, fast computation of  the next stoppints is warranted, 
because it eliminates the significant time delays  involved in the  stop- 
ping, starting, and changing ?he direction of motion.  Hence,  we  con- 

clude that it is highly desirable to expedite the computation involved 
in finding the next stop-points. As indicated in the above  algorithms, 
the robot stops until the model is updated, and thus the updating time 
directly  adds to the total travel  time.  Hence, there is also  a  need for 
fast updating algorithms. The sensor scanning  time,  and  the  times 
for travel, stopping, starting and change of direction are approxi- 
mately  fixed for a given robot configuration. However, the s tep  
involved in process PLANNING can be expedited by efficient design 
of the data structures and algorithms for implementation of the eer- 
rain model. 

We assume that there are no closed comers in the obstacle ter- 
rain into which the robot can navigate. Stated formally, if the  source 
and destination points lie on the opposite sides of an obstacle, the 
destination p i n t  can be reached  by  traversing  around the obstacle in 
either dimtion. The obstacle terrain is finite  and  the  robot has been 
navigating in the terrain for a finite amount of  time. In such  a situa- 
tion the navigation technique  described in earlier section will  always 
terminate because the robot can always  get  around each of the obsta- 
des lying on the way  to  she destination point. Since each path 
involves a finite number  of  polygons - and each polygon  bounded by 
a finite nudoer of finite  sized edges, - the queue and the buffer of the 
computing system will also be bounded in size. Once sensor 
scalpsling is initiated by entering *' into the queue, the process P W -  
MNG enters a wait state. At this time the process CONTROL cannot 
be in the wait state indefinitely, as it will eventually  read * and  come 
QM of wait state. After the process CONTROL returns the  sensor 
data, the  process PLANNING comes out of  waiting  state. Similarly, 
when  process CQNTROL is waiting, the process PLANNING will not 
be waiting  indefinitely  as it will  eventually  read  the  contenrs  of  the 
buffer and  come out of waiting state. Hence  the  system  should be 
free. of deadlocks and starvation. 

4. FERFORnANCE ANALYSIS 
The performance of concurrent processes  described in the  pre- 

vious section can be  analyzed  using four time  measures,  namely,  the 
travel-time, sensor-time,  update-rime, and plan-time for each  path 
I % Q ~  the source point S to the destination p i n t  D . Each  path  from 
S tc D i s  characterized by the 'ordered' sequence of polygons, 
S *=cp 1,~22,...gk>~ h a t  i s  eccountered as &e robot uaverses from S 
to D .  Let si and di xqpsent the source and destination points, 
~spctivelgr, eomcsponding to 'he polygon pi. Then the path from S 
to D Is also qmsente8 as h e  ordered  sequence  given by 
cs 1 9 2  ,..., Sk,dk>> and ais0 Si+l=dj, fox i=1>29...$c-1). 

Tne travel-rime, 7 ' ~  i s  given by 7 T$(pi), whew Tt@i) is the 

time  taken by the robot to  travel  from s; to di. Sf pi is a free- 
polygon, then Tg@j) is the time  taken by the robot to Eravel from sj 
straight to 4 .  If p ;  is an obstacle-polygon, then Tt@i) is the  time 
taken by the robot to travel from si to d; via the smaller path among 
?he two paths h a m  s; to di along the edges of  the  polygon pi. The 
pinsin factor that decides TT is the formation of various polygons, 
wPic3r in turn depends on the paths  traversed so far. 

k 

83 

The sensor-time, T.5, i s  given by 7 TsS@i)> where TS@i) is the 

time needed to scan the unexplored polygon p i .  If pi is either a 
free-polygon or an obstacle-polygon with  respect to si, then ",(pi) is 
zero. 'kame value of Ts degends on the profile  and location of the 
various explored and  unexplored  polygons. 

k 

,e1 

The updatetime, Tu is given by T&), where Tu@i) is the 

time needed to update the information about the polygon p i ,  based 
on the sensor data. As in the earlier case, TpJ@j) is zero tfgi is  either 
a he-plygon  or  an obstacle-polygon with respect to si. If pi is an 

k 

& 
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unexplored-polygon, then T,@i) includes the time needed to divide 
pi into visible and invisible regions, and again'to divide the visible 
region into obstacle-polygons and  free-polygons. It also includes the 
time needed to merge the free-polygons to form bigger free- 
polygons. This factor not only depends on the  profile  and the loca- 
tion of various polygons, but also on the data structures and algo- 
rithms used for implementing the terrain  model. 

The plan-he,  Tp, is given by Tp@i), where Tp@i) is the 

time  required to plan a path from si to di, given that pi is either a 
free-polygon or an obstacle-polygon.  If pi is a free-polygon, then 
T&) is the time required  to  find the intersection point, di, of pi 
with the line joining si to D. If pi is an obstacle-polygon  with 
respect to si, then Tp(pi) includes the cost of planning the shorter 
path along the edges of pi .  Like the update-time, this parameter 
depends on the algorithms and data structures used to implement the 
terrain model, as well as on the profiles  and locations of  various 
polygons. 

The time taken for the robot to travel from the souce point S to 
the destination point D is a function of all four times  described 
above. 

I =  .f; 

THEOREM I: 
The time required by the robot to traverse from S to D is 
Tp@ I)+TT in the best-case. 
PROOF In the best-case, every p i ,  of the sequence 
S * =cp 1,p 2 ,..., p k >  of the path from S to D , is a  free-polygon. 
Also, the computation of di takes less time  than T&;-l), for 
i=2,3, ..., k .  Thus, the stop point di is computed  while the robot 
is on it's way to si and is kept ready in the queue before the 
robot reaches si. Hence, the total time of  travel  from S to D is 
given by: 

k 
T p @  l ) + ~ m a x ( T p @ i ) , T t @ i - 1 ) ~ ~ ~ @ & )  

=Tp @ 1 W T  

This best-case time is almost  equal to the  travel time needed to 
merely travel from S to D . 

THEOREM 2: 
The time required by the robot to traverse from S to D is 
T~+Tp+Tv+rs in the worst-case. 
PROOF: In the  worst-case,  every polygon pi E S *, is to be 
explored. In such a case no overlap of operations is possible, 
and the algorithms CONTROL and PLANNING operate in 
strictly mutually exclusive manner.  Hence,  the  time total time 
of traversal from S to D is given by: 

=TT+Tp+Tu+Ts 0 
In general, the actual travel time lies in between these two lim- 

its. In the initial stages of learning, the  travel  time is close to that in 
the worst-case. As learning proceeds, more and  more  polygons are 
explored and the total travel time approaches the time of the best 
case. 

5. THE DATA STRUCTURE FOR THE  TERRAIN  MODEL 
The performance of the concurrent processes, CONTROL and 

PLANNING, depends on the plan-time, travel-time,  sensor-time  and 
update-time for the various polygons encountered by  the  robot dur- 
ing its traversal. Of these factors, the travel-time and  sensor-time are 
mainly determined by the mechanical speeds of various  components 
of  the robot system,  and, in general, are not solely conh-olled by  the 

model used for the obstacle termin.  However, the plan-time and 
update-time can be ControIled  by suitably designing the terrain 
model and the methods to manipulate the temain information. As 
shown in the best-case analysis .of  the  system, even for fixed  values 
of the travel-time  and  sensor-time, the optimal performance can be 
obtained by utilizing algorithms such that the condition 
ma~(T ,@~) ,T ,@~-1) )  = T&-l) for i=2, ..., k is satisfied.  In  precise 
terms,  we first need to obtain a good data structure for representing 
the various polygons. We also need to design efficient algorithms for 
performing the basic operations such as finding the intersection 
points, partitioning the polygons,  etc. In this section, we propose a 
spatial graph model for representing the polygons that characterize 
the partially explored obstacle terrain at any  point of time. We use a 
data structure based on a  modified  version of the adjacency list of a 
graph. This data structure is specially suited for the operations to be 
performed on the  polygons. The complexities of various algorithms 
are estimated and compared, in appropriate cases, to the ones based 
on the conventional adjacency list for the spatial graph. 

5.1. THE SPATIAL GRAPH  MODEL 
The set of polygons that span the obstacle terrain are collec- 

tively exhaustive and  mutually  non-intersecting.  Fig. 3 shows a  par- 
tially explored terrain. A spatial  graph, G=(V,E),  for an obstacle 
terrain is constructed by representing each vertex of a polygon by a 
vertex of the graph. An edge of a polygon is represented by the 
corresponding edge of the spatial graph. To each vertex v E V ,  we 
associate a  pair  of coordinates representing the corresponding vertex 
point in the space. We note that the spatial graph is a planar graph. 
Fig. 5 illustrates the spatial graph for the terrain of  Fig. 3. Let d 
denote the maximum  number  of edges meeting at a  vertex of any 
polygon or equivqlently the  maximum degree of a node in the spatial 
graph. Each polygon is represented by a  plane of the spatial graph 
formed by the corresponding fundamental circuit ( refer to [7] for 
preliminaries on graph theory). 

Fig. 5 Spatial graph model for the obstacle terrain shown in 

Fig. 3 

53. THE MODIFIED  ADJACENCY LIST 
The spatial graph is implemented  using  a modified djacency 

list data structure. The adjacency list corresponding to each node is 
represented as an array of all the adjacent nodes sorted according to 
the increasing values  of Slopes of the corresponding edges. The 
slope of any edge ( v l p 2 )  at the vertex v i ,  denoted by S ( V ~ V ~ ) ,  is 
measured in terms of the angle subtended by the line v 1v2 to a 
reference direction d Let A [v ]=cv 1,v 2, . . . , v,>, v E V ,  r S i ,  for 
(V ,vi) E E ,  i=1,2, . . x ,  represent the modified  adjacency list 
corresponding to the vertex v . Then, we define vi+l to be the next- 
neighbor of vi, for i=1,2, ...,( r-I),  with respect to the vertex V. The 
vertex v 1 is taken to be the next-neighbour of I+. Fig. 6@) shows 
the modified adjacency list s t ~ c t u r e  for the spatial graph of Fig. 

1141 



qa). For example, A [vq], the adjacency list of the vertex v 4  is 
obtained by traversing in the anticlockwise direction starting with 
the direction of X. It is easy to see that the slopes of the edges 
(v 4,v  3),(v 4,v ~ ) , ( v  4,v 5),(v 4,” 6) are in the increasing order. The 
next-neighbors of v 5 are v 2 and v 4 with  respect to v 1 and v 2 respec- 
tively. It is important to note that for every vertex vi E V ,  there 
exist unique pair of  vertices v and v, and  a polygonp , such that v, 
is the next-neighbor of vi and (vi,v) and (v,vj) are the edges of p ,  
Refering to Fig. 6, corresponding to the vertex v 5, the unique pair  of 
vertices is v 2  and v4, and  the  polygon is p 2. If  the edges (v;,v) and 
(v ,vi) belong to the same polygon p , then vi and vi  are adjacent in 
A [VI. In the modified  adjacency list we also store, for each vertex v 
E V ,  a sorted list M[v]=cm1,m2, ... ,mm,>, such that mi =S(v,vi), for 
i=1,2, ..., r . Let a polygonp be  represented by the ordered set of ver- 
tices C V I , ~ ~ , . .  .,VI> obtained by starting with  the vertex v 1  and 
traversing along the edges of the p in the clockwise direction. This 
set can be obtained by starting with v 1 and  repeatedly  finding the 
next-neighbors. For example, consider the  polygon p2, given by 
< V ~ , V ~ . V  5>, in Fig. 6(a). The node v 5  can be reached from v 2  by 
finding the next neighbor of v 2 with respect to v 4. 

(a) Spatial graph 

ndex adjacency list 
10dc A [ V I  

@) Modified adjacency list 

Fig.  6  Modified  adjacency list for a spatial graph 

Each  of the subproblems  involved in implementing the 
spatial-graph  may have efficient solutions or analogs with efficient 
solutions in  an environment specifically suited to that  subproblem. 
The field  of computational geometry is replete with  problems  that 
are similar to the subproblem discussed in this paper. The details 
can be found in Ah0 et a1 [I], Lee and Preparta [13], and Mehlhom 
[ 161. Here, we are interested in a data structure that solves the sub- 
problems with reasonable over-sal8 efficiency. 

53. THE COMPLEXITY ANfiUSIS 
In this section, we list the  various  computational subtasks 

involved in the execution of process PLANNING and estimate the 
complexity of each of these subtasks. 

(A) Path  Planning Algorithms 

of  the following operations: 
Path planning involves accessing  various  polygons  and consists 

(1) Finding  the next-neighbor: One of the basic operations 
needed for the various subtasks is to find the vertex vi+] that is 
next to the given vertex vi, in the polygon p = 

< v l ,  ..., vi,vi+l, . . . ,VI>.  The next edge vi+l of the polygon can 
be obtained by carrying out a  binary search for the slope 
S(vi-],vi) on the array M[vi], and then retrieving the vertex 
vi+l is j t h  entry in A [vi] such  that, m,-1=S (vi-l,vi). The cost 
of this operation is O(1ogd). It is to be noted that this cost is 
0 ( d )  if the conventional adjacency list representation is used. 
(2) Finding near-polygon: The near-polygonp of s 3  is found 
as follows:  Carry out a  binary search on the  array M ( s )  to 
obtain the vertex v, such that m,-lSS(s a)&,. This has a 
time complexity of 0 (logd). Let v,-1 and vi be  the j t h  and 
j+l th  entries in A [SI. The vertices v,+ ,vi uniquely deter- 
mine the required  near-polygon p ,  and  finding  of  which 
suffices for the line 3 of algorithm PLANNZNG. However,  the 
complete vertex set o f p  can be obtained in O(n  logd) time by 
repeatedly  finding the next-neighbors ,where  n is the number 
of vertices of the polygon p . 
(3) Finding  the next stop point: The computational  subprob- 
lem corresponding to lines 6 and 12 of algorithm PLANNING 
involves finding  the next stop point, Y ,  corresponding to  the 
source point s and the final destination point D . The  point s is 
a vertex of p and p is either a free polygon or an obstacle 
polygon. If p is an obstacle polygon, then the next stop point 
is computed as decribed in section 2. In such  a case we  find  the 
a  vertex Y1 (of p ) such that the near-polygon  of Yd is dif- 
ferent from near-polygon  of sa by traversing along the edges 
of p in clockwise direction. This can be  achieved by finding 
the next-neighbour v and the  near-polygon  of v3 at  every  step. 
The status of the  polygons can be stored by augmenting the 
adjacency lists. Corresponding to rhe array 
A [v]=<v 1, . . . , vi,vi+l, ..., v,>, an  auxiliary may 
B [v ]=<b 1, . . . , b,> is stored, where bi gives the status of the 
polygon given by vi,v  ,vi+l. Let n denote the  number  of edges 
of the polygon p . Thus, the computation of Y 1 has 0 (n) such 
steps and each step costs O(logd). Thus the complexity of 
finding the point Y 1 is 0 (n logd). The other point Y 2 obtained 
by traversing along anti-clockwise has the  same  complexity. If 
p is a free polygon the next stop point is the intersection point 
Y of  the line joining the source point s to  the  final destination 
point D with the polygon p . The point Y can be  computed by 
starting with the vertex s, and  repeatedly  findin  the  next- 
neighbors until an edge that intersect the line s if is found. 
Thus the  complexity  of this is 0 (nlogd), because  the  next- 
neighbors are found 0 ( n )  times. 
(4) Finding  shorter path: If the currently  accessed  polygon p 
is an obstacle-polygon, then the next stop point Y is to be com- 
puted  as in line 13 of  process PLANNING. The distance 
corresponding to the path to the  potential stop point Y1 - via 
the Vertices encountered while  traversing  along  the edges of p 
in the clockwise direction - is computed during the  computa- 
tion of Y1 as explained above. This has h complexity  of 



0 (nlogd). The distance companding to the other path to Yz 
- via the vertices encountend whiie rravelling along the anti- 
clockwise direction - is compted in the same fashion. This 
also has the complexity of 0 (nlogd). Then the path to Y 
corresponding to the minimum length is chosen. Hence, the 
complexity of finding the minimum path is O(n1ogd). In 
some cases the criterion for choosing the path could be the 
number of vertices, total number of changes in the direction, 
total amount of change in the direction, etc. These values can 
also be computed in 0 (nlogn) time, by storing the relevent 
information in the corresponding adjacency lists. 

(B) Learning Algorithms 
Line 18 of process PLANNING describes very important sub- 

task namely learning. Learning is important in two ways. First, it 
implements the most important feature of the proposed method. 
Second, the time spent in this task directly adds to the total travel 
time for the robot. In this phase of navigation, the currently accessed 
polygonp  is modifed  based on the Sensor data obtained  from process 
CONTROL. As explained earlier the  process of update has two con- 
stituents: a) partitioning the unexplored polygons, b) combining the 
free-polygons. The step a) involves partitioning the polygon p into 
visible and invisible parts with respect to s , and also partitioning the 
visible parts into free-polygons and  obstacle-polygons. In either 
case, the basic operations would be an addition of  a  new vertex, say 
v , on an edge, and an addition of  a  new edge, say (v  1,v  2). The pm- 
cess of merging the free-polygons to form bigger free-polygons 
involves deletion of vertices  and  edges. 

(1) Insertion  and deletion of vertices and edges: Let the ver- 
tex v be created on the edge (v l,v2). This can be camed out 
by ovexwriting v 2 by v in A [v 11, and  overwriting v 1 by v in 
A [v 11, and then creating A [VI and M[v ] with two entries 
corresponding to v 1 and v2. Complexity of this process is 
0 (Iugd). Addition of a  new edge (v 1,vz) can be carried out by 
entering by entering v 2 into A [v 11 and M [v 11, and  also v 1 in 
A [v 21 and M [v 21. Searching for the respective value in the 
arrays A and M has the complexity  of O(logd) .  However, 
entering a  new  value might involve shifting all the elements of 
the corresponding arrays. Hence, the complexity  of addition of 
a  new edge is 0 (d).  Similarly, the complexity  of deleting an 
edge is 0 (d ). The deletion of a  vertex  v  involves deletion of 
all the edges incident on v ,  and  thus has the complexity of 
0 (d2). 
(2) Decomposition of polygons: Let the sensor data introduce 
k new edges for partitioning unexplored  polygon into visible 
and obstacle polygons.  A  polygon p 1 whose interior is visible 
froma  vertex  may not be convex because the angle included by 
vertices may not be less than IC ( as shown in Fig.7(a)). The 
vertex v from which the polygon is visible is joined to each 
vertex v ( of p 1) such that the included angle at v 1 is not less 
than x as shown in Fig.7@). If v is the only vertex with 
includes angle not less than IC, then v is joined to one of the 
other vertices. Such a decomposition of the visible polygons 
always results in convex  polygons because all the included 
angles are made less than x. This decomposition process can 
introduce O ( n )  edges, where n is the number  of edges of the 
unexplored polygon. Hence the complexity  of partitioning the 
polygon has the complexity of 0 ( (k+n)d) .  
(3) Merging of free-polygons: When the new free polygons 
are created, we examine all the neighbor free polygons to find 
out if  they can be. merged  with the new ones to form bigger free 
polygons. In general there  could be overlapping subsets of free 
polygons that could be merged. In such case the merging could 

(a) The polygon p 1 is visible from v but  not convex 

(b) The polygon is decomposed into convex polygons p f and 
p f  byjoiningv m v l  

Fig. 7 Decomposition of visible plygon 

be carried out according to a stategy that the resultant number 
of free polygons is minimum. There have been efforts to design 
a free-polygon merging algorithm that has a  worst-case  time 
complexity bemr than the brute-force of exhausting all the 
combinations of polygons. This problem is currently  being 
pursued by the authors. The resultant merged free-polygon has 
to have the largest area among all the cambinations of the 
given free polygons. The complexity  of  the exhaustive 
enumeration method is  O(PK+pnIogd), where K is the cost 
of computing the area for the given choice of free-polygons, p 
is the number of polygons to be merged,  and n is the number of 
edges of the biggest polygon  among the polygons  to be 
merged. The first factor corresponds to the cost of computing 
the areas for all the combinations of polygons,  and Second fac- 
tor corresponds to merging the selected  polygon  combination. 
Though the complexity of this phase is high, in situations 
where there are only a few polygons to be  merged this algo- 
rithm gives reasonable results.  However,  the authors feel that 
there could be efficient solutions to this problem. 

5. CONCLUSIONS 
The capability to learn is essential to an intelligent autonomous 

mobile robot navigating in an unexplored terrain.  An  efficient  navi- 
gation technique has been developed by  the authors [10,11]  to incor- 
porate learning in a robot navigating in an  unexplored  terrain. As a 
part of learning, the robot gradually builds the terrain model as it 
undeaakes a  number  of goal-directed traversals. Consequently, the 
paths of navigation undertaken by the robot  become closer to glo- 
bally optimal paths, as learning proceeds. 

In this paper we propose a technique for autonomous robot 
navigation in terms of a system of concurrent processes mnning on 
the computing system of the robot. This system is shown  to  be free 
from deadlocks and staryation. The performance analysis of the con- 
current processes reveals that the various path planning and learning 
operations have to be expedited in order to reduce the  time of navi- 
gation for any path. This neccessitates an obstacle terrain model  that 
efficiently supports all the operations involved i n  path  planning  and 
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learning.  A  modified adjacency list data structure is proposed for the 
obstzcle terrain model. This data structure is proven to be efficient 
in supporting the operations to be performed on the terrain model. 
The complexities of various algorithms for manipulating the terrain 
model are estimated. These algorithms are currently being imple- 
mented on a hypercube computing machine  mounted on HERMIES- 
I1 at Oak Ridge National  Laboratory. 
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