
CONCURRENT ALGORITHMS FOR AUTONOMOUS ROBOT
NAVIGATION IN AN UNEXPLORED TERRAIN

S.V. Nageswara Rao * , SS. Iyengar * , C.C. Jorgensen ** and CR. Weisbin **

* Dep;ntment of Computer Science
Louisiana State University

Baton Rouge, LA 70803, USA

ABSTRACT
Navigation planning is one of the most vital aspects of an auto-

nomous mobile robot. The problem of navigation in a completely
known obstacle terrain is solved in many cases. Comparatively less
number of research results are reported in literature about robot navi-
gation in a completely unknown obstacle terrain. In recent times,
this problem is solved by imparting the learning capability to the
robot. The robot explores the obstacles terrain using sensors and
incrementally builds the terrain model. As the robot keeps navigat-
ing, the terrain model becomes more learned and the usage of sen-
sors is reduced. The navigation paths are computed by making use of
the existing terrain model. The navigation paths gradually approach
global optimality as the learning proceeds. In this paper, we present
concurrent algorithms for an autonomous robot navigation in an
Unexplored terrain. These concurrent algorithms are proven to be
free from deadlocks and starvation. The performance of the con-
current algorithms is analyzed in terms of the planning time, travel
time, scanning time, and update time. The analysis reveals the need
for an efiicient data structure for the obstacle terrain in order to
reduce the navigation time of the robot, and also to incorporate leam-
ing. The modified adjacency list is proposed as a data structure for
the spatial graph that represents the obstacle terrain. The time com-
plexities of various algorithms that access, maintain, and update the
spatial graph are estimated, and the effectiveness of the the imple-
mentation is illustrated.

1. INTRODUCTION
Robotics is one of the most actively researched mas of com-

puter science. It is replete with issues ranging from abstract
mathematical problems to highly pragmatic ones. In many applica-
tions that involve monotonous and tedious tasks, (e.g. normal
maintenance or inspection) it would be desirable to employ robots.
In addition, hazardous environments such as the ocean, nuclear reac-
tom, battlefields, etc. require operations that might be safely and
efficiently carried out by autonomous mobile robots. Tasks requiring
rapid responses in emergency situations are also appropriate for
intelligent machines. An autonomous mobile robot may be charac-
terized as a machine capable of motion planning, execution and
leaming. There have been numerous efforts to design automated
mobile robots. Examples are SHAKEY of Nilsson [H I , the P L
robot of Thompson [191, HILARE of Giralt et al[8], the CMU Rover
of Moravec 1171, and HERMIES of Weisbin et al [22], etc. Some of
the most important research areas in robotics are knowledge
representation, task planning, sensor interpretation, dynamics and
control, architectures for robot computer systems, algorithms for
concurrent computation, coordinated manipulation and navigation,
etc.

One of the key problems in the design of an autonomous
mobile robot is the navigation planning. The problem of navigation
planning in a 'known' terrain involves finding collision-free (possi-
bly, optimal) paths through a terrain that is arbitrarily populated with

U.S. Government Work. Not protected by
U . S . copyright.

**Center for Engineering Systems Advanced Research
Engineering Physics and Mathematics division

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831, USA

obstacles. This problem has been the focus of much research in
recent times, and has been solved in many cases. For a broader treat-
ment on this see [2,3,6,9,14,15,21]. The techniques for navigation
described in these papers generally assume that a complete global
model of the obstacle laden environment is known. Most of these
techniques model the obstacles and the free space as precise
mathematical and geometric entities. For a robot navigating in a
new or unexplored terrain, these techniques are not directly applica-
ble or extendible. There has not been as much work reported in the
literature with respect to robot navigation in an unexplored terrain.
This can be attributed at least in part to the lack of global informa-
tion about the obstacles and their locations. This makes the global
optimality of the collision-free paths difficult to achieve. Many of
the existing solutions to this problem are based on sensor informa-
tion [5,8,17,191, and in general do not achieve global optimality for
the navigation paths. Recently, Iyengar et al [10,11] have developed
a technique for navigation planning. This technique is based on
learning and requires no initial terrain model. The terrain model is
gradually built by consolidating the information about the obstacles
as newer paths are traversed. The global optimality of the paths is
gradually achieved as the learning proceeds.

In this paper, we shall discuss concurrent navigation algorithms
well-suited for implementation in the forthcoming generation of
intelligent mobile robots. These concurrent algorithms implement
the various activities of an autonomous mobiiie robot in a well
coordinated manner. An efficient implementation of these algo-
rithms calls for a data structure to store the obstacle terrain This
data structure should guarantee efficient access in implementing the
path planning and learning activities of the robot. We propose and
analyze a 'modified adjacency list' data structure for the terrain
model.

The organization of the paper is as follows: Section 2 reviews
navigation by learned spatial graph techniques. Section 3 develops
the concurrent algorithms for robot navigation corresponding to
methods proposed in section 2. In section 4, the performance of the
concurrent algorithms is analyzed. Section 5 describes an abstract
data srrucmre for the terrain model. Included in this section are the
implementation and analysis of the proposed data structure.

2. THE NAVIGATION TECHNIQUE
The robot navigation problem considered in this paper can be

defined as follows: Initially, the robot is placed in an unexplored ter-
rain that is arbitrarily cluttered with obstacles. The robot is required
to autonomously perform a number of goal direckd traversals. Only
the gross platform motion in two dimensions is considered. Without
loss of generality the robot is assumed to be a point in the plane
formed by the obstacle terrain. This is not a severe restriction for the
method, as path planning for a finite sized robot involves 'enlarging'
the obstacle-size to account for the actual robot dimension. as
described by Lozano-Perez and Wesley [15]. Navigation in an unex-

1137

plored terrain is significantly different from the problem addressed
by Brooks [2], Brooks and Lozano-Perez [31, Crowley [6], Gouzenes
[9], Lozano-Perez[l4], Lozano-Perez and Wesley [E], Moravec
1171, and Udupa [21], as no initial terrain model is available in our
case. In the technique developed by Iyengar et a1 [10,11], the terrain
model is gradually built by the robot as it traverses newer paths. At
any intermediate point of time, the partially built terrain model is
used in planning the required path of navigation. The terrain model
is updated by integrating the sensor information obtained during the
execution of current traversal. As a result of this incremental leam-
ing, the global optimality of navigation paths is gradually
approached. In this respect, the approach of [lO,ll] is also different
from the sensor based methods of Moravec [171, Thompson [191,
Giralt, Sobek, and Chatila [SI, and Chattergy [5] which are not expli-
citly directed towards global optimality in navigation planning.

The capability to learn about the obstacle terrain is vital to an
autonomous mobile robot navigating in an unexplored or partially
explored terrain. Crowley [6], Laumond [12], and Turchen and
Wong [20] use different forms of learning in the design of robot sys-
tems. In this section, we summarize the robot navigation method of
Iyengar et al[10,11] which is based on a different implementation of
learning. In [10,11], learing is incidental meaning that the r o b o t
explores only the regions that lie on the paths of navigation. The
process of navigation operates in two basic modes - local navigation
and global navigation. The obstacles are avoided in a localized
manner using the sensor information in the local navigation mode.
The global navigation mode consists of two components: (a) path
planning using the partially built terrain model, (b) learning by
integrating the information extracted from sensor readings. Initially,
the paths are planned and traversed in local navigation mode based
on the sensor readings only. These paths of navigation partition the
obstacle terrain into a set of polygons. In the global navigation mode
these polygons are accessed and manipulated in path planning and
learning. The learning incorporated in this method enables the paths
to approach global optimality as as the robot makes succesive jour-
neys. This is a veIy significant factor in applications wherein the ter-
rain model is completely unknown or only partially known. Gen-
erally, in such applications the sensor based approahes are followed
for path planning [8,17,19]. But, the approach of [10,11] is more
efficient than the pure sensor based approaches in a general case,
because as the navigation continues (a) sensor is used to a lesser
extent, (b) the paths approach global optimality. In the remainder of
this section we briefly discuss the navigation technique of [10,11],
and more detailed treatment can be found in those papers.

In the local navi ation mode, the robot scans the obstacle ter-
rain around the line S d joining the source point S to the destination
point D . Then we compute two points of inflection (on either side
of the line Sa) such that the scanner view is blocked by an obstacle
within these two points. The robot travels to one of the two points in
a such way that the distance traversed in a direction perpendicular to
and opposite to Ss is minimized. The same strategy is applied recur-
sively from this intermediate point. The paths traversed in this mode
are optimal only in a localized manner in terms of the distance
traversed by the robot. In general this technique is not guaranteed to
yeild a globally optimal path.

The initial paths are traversed in local navigation mode, and
these paths partition the obstacle terrain into a set of polygons. Thus
the two-dimensional plane of the obstacle terrain is represented as set
of non-intersecting polygons that cover the entire navigation area.
The edges of the polygons correspond to the paths previously
traversed by the robot. A free-polygon represents an obstacle-free
region. An unexplored-polygon represents a region whose interior is
not explored by the sensor. A polygon p is an obstacle-polygon with

respect to v , a vertex or a point on the edge, if the entire wan range
of the sensor (inside p is obstructed by the obstacle(s) contained
in p when the sensor is located at vertex v . A traversal from the
source point S to the destination point D consists of a series of
stoppoints; in between two adjacent stoppoints the robot travels in
straight lines. For a given source point S and destination point D ,
we find S * and D * to be the vertices of polygons nearest to S and D
respectively. The navigation from S to S * and from D * to D is car-
ried out in the local navigation mode. The navigation from S * to
D * is canid out in the global navigation mode.

Fig. 1 Unexplored obstacle ttnain

The global navigation mode can be described as follows: Let p
be a polygo2 with S' as a vertex and containing the end portion of
the line S *D 'dowards S' . We call this polygon to be the near-
polygon of S*D*. If p is a free-polygon then the rokot directly
traverses to the intersection point X of p with the line S ' D *. I f p is
an obstacle-polygon then the edges of p are accessed in the clock-
wise direction, starting from S * , to obtain a point X such that+the
near-polygon of XL? is different from the near-polygon of S'D *.
Such point is computed treversing in the anti-clockwise directions
from S * along the edges of p . Among the two points computed, the
point nearest to S * is chosen as Y . Then navigation from Y to D * is
recursively carried out in global navigation mode. If p is an
unexplored-polygon then its interior is scanned from the vertex S * .
Based on the sensor information p is decomposed into obstacle-
polygons and obstacle free regions. The obstacle regions are decom-
posed into free-polygons. Then adjacent free-polygons are merged
to form bigger free-poly&ons. After this decomposition process the
new near-polygon of S * D * is either an obstacle-polygon or a free-
polygon, and the cases described above are applicable.

A summary of the results of this navigation technique is as fol-
lows (see [10,1 I] for details) : As learning proceeds,

a) Capability for efficient navigation planning evolves from
local optimality to global optimality.
b) The polygons that bound obstacles shrink in area and as a
result enclose the obstacles more tightly.
c) The free-polygons are generated to be convex and they grow
in size.
d) The frequency of taking sensor readings decreases.
e) The problem solution becomes computational instead of sen-
sor based.
We now illustrate the navigation technique using an example

of rectangular terrain. Fig. 1 shows an unexplored terrain containing
four obstacles 0 1,02,0 3,and 0 4 . Consider the navigation of the
robot from S 1 to 0 4 in local navigation mode. Seven traversals are
undertaken from the source points S ID 1,s 2 p 2,s 3 p 3,and S 4 to the

1138

4

Fig. 2 Obstacle terrain explored in local navigation mode

destination points D 1+S2,D2,S3,D3+S41 and D4 respectively. As a
result, the obstacle terrain is partitioned into a set of polygons as
shown in Fig. 2. The polygons formed until this stage are designated
as unexplored-polygons. Consider the navigation from S to D in the
global navigation mode. The robot travels from S to S* in local
navigation mode. The polygon p 2 of Fig.2 is is scanned from S *
and decomposed into free-polygons p21,pu and obstacle-polygon
p 22. Then robot traverses to S 5 and explores the region p 4 of Fig.2.
As a result, p 4 is decomposed into the free-polygons p 41,p 43 and
obstacle-polygon p42 as shown in fig3. Then the robot traverses
directly across the free-polygon p 41 to D * . Then D is reached in the
local navigation mode. The exact path of navigation is denoted by
dotted lines in Fig.3. Observe that the obstacle 0 2 and 0 4 are more

4

s3 s2
Fig. 3 Navigation from S to D in global navigation mode

tightly bounded by the polygons after this traversal. Any traversal
across the polygons p 3 and p 43 will combine them to form a single
large free-polygon. For more details on this method see [10,11]. In
the following section, we propose a model of concurrent computa-
tion for this robot navigation system.

3. CONCURRENT PROCESS MODEL FOR ROBOT NAM-
GATION

The navigation of an autonomous robot is determined by vari-
ous mechanical and control operations such as moving, sensing,
stopping, starting, etc. The computer system for the robot should
coordinate all these operations, apart from carrying out the computa-
tions. A close inspection of various activities involved in the naviga-
tion of a robot reveals that certain constituent operations can be car-
ried out concurrently. Exploitation of concurrency in these opera-
tions decreases the over-all journey time of any traversal. In this sec-
tion, we examine the navigation process with a view to find out the
exact operations that can be canied out concurrently.

The robot is assumed to have two systems, a control computing
system and a pfunning computing system. This abstract model is
analogous to robots which have an on-board computer for controlling
the motion and sensor operations, and another on-board computer
for carrying out planning and world modelling [10,11,22]. Though
the treatnient here is based on the robot HEWIES-II[10,11,22], it is
equally applicable for many other robot systems. The control system
moves the robot from a source point to a destination point. It
operates the sensors to scan the specified regions and returns the
information to the planning system. The planning system accesses
the terrain model to plan the next stop points and returns them to the
control system. It also incorporates learning into the obstacle terrain
by integrating the information about the explored polygons. A queue
is utilized by the planning system to return the stop points to the con-
trol system. A buffer is utilized by the control system to return the
information about the explored polygons to the planning system.
The configuration of the system is shown in Fig. 4.

QUEUE OF
STOP POINTS

i l CONTROL
COMPUTING
SYSTEM

COMPUTING
SYSTEM

t

Fig. 4 Configuration of the computing system of the robot

The operation of the computer system for the robot is charac-
terized as the concumnt processes PLANNING and CONTROL.
The main function of the algorithmic processes PLANNING and
CONTROL is to implement the navigation &que as a coordi-
nated activity between the control and the planning computing sys-
tems. The planning computer computes the intermediate stop pints
and enters them into the queue for the control computer to pick up.
If the next polygon is unexplored then process PLANNING process

~~ ~~

process CONTROL;

begin
1. while (destination is being reached) do

2. while (queue is empty) do stop and wait;
3. get the next entry from the queue;
4. if (entry is *)
5. then stop, explore and return the information to the buffer;
6. else .

I1 This process controls various mechanical actions I/

begin

begin
7. goto the next stop point;
8. if (stop point has been overwritten

to allow continued straight line motion)
9. then goto to the new stop point without stopping

and changing the direction;
end;

end;
end;

1139

enters * into the queue as in line 16. The process CONTROL process
picks * from the queue, scans the polygon and returns the informa-
tion via the buffer as in the lines 4 and 5 of process CONTROL. The
process PLANNING waits at this point as per line 17 of process
PLANNING. The obstacle terrain model is updated in line 18 of pro-
cess PLANNING.

process PLANNING;
// This process carries out the computations / I
begin

1. last-stop t source point;
2. while (destination is not reached) do

begin
3.

4.
5.

6.
7.
8.
9.

18.

11.

12.
13.
14.

15.

16.
17.
1s.
19.

..,
find the near-polygonp , of the line from the

last-stop point to the destination point;
if @ is a free-polygon)
then
begin

compute the next stop point, s ;
if (previous polygon is €ree-polygon)
then overwrite the latest stop point with s ;
else enter the stop point into the queue;

end
else if (p is an obstacle-polygon with respect to

the latest stop point in the queue)
then

begin
compute the next stop point;
compute the shorter path along edges ofp ;
enter into the queue, in order, all the vertices

o f p on the shorter path;
end;

eke
begin

enter into the queue * and the range of scan;
if (buffer is empty) then wait;
update the model;
last-stop c last stop point;

en&
end;

cad;

Tie robot stops to take the correspnding sensor peadings, if
required, as indicated in line 5 of process CONTROL. As indicated
in line 2 of process CONTROL the robot stops and waits if the next
stop point is not already computed and entered into the queue (by
process PLANNING). Since stopping and starting at the next stop-
point involves a considerable amount of time, faster computation of
the next stop-point would eliminate considerable time delay. How-
ever, the execution of step 7 of process CONTROL often involves a
change in the direction of motion.

if the polygon which the robot is cumndy traversing and the
next polygon in sequence are both free-polygons, ?hen the robot can
continue to travel straight without sEopping and without a change in
direction. 'Kis is possible oniy if the planning computer computes
the next stop-point before the robot reaches the last stop-point. In
the cases where it is possible, the process PLANNING overwrites the
latest stop-point as in line 8 of process PL4NNING. This infomu-
fion is utilized by process CONTROL to continue travel in the same
dixction (as given in lines 8 and 9 in process CONTROL). As in the
earlier case, fast computation of the next stoppints is warranted,
because it eliminates the significant time delays involved in the stop-
ping, starting, and changing ?he direction of motion. Hence, we con-

clude that it is highly desirable to expedite the computation involved
in finding the next stop-points. As indicated in the above algorithms,
the robot stops until the model is updated, and thus the updating time
directly adds to the total travel time. Hence, there is also a need for
fast updating algorithms. The sensor scanning time, and the times
for travel, stopping, starting and change of direction are approxi-
mately fixed for a given robot configuration. However, the s tep
involved in process PLANNING can be expedited by efficient design
of the data structures and algorithms for implementation of the eer-
rain model.

We assume that there are no closed comers in the obstacle ter-
rain into which the robot can navigate. Stated formally, if the source
and destination points lie on the opposite sides of an obstacle, the
destination p i n t can be reached by traversing around the obstacle in
either dimtion. The obstacle terrain is finite and the robot has been
navigating in the terrain for a finite amount of time. In such a situa-
tion the navigation technique described in earlier section will always
terminate because the robot can always get around each of the obsta-
des lying on the way to she destination point. Since each path
involves a finite number of polygons - and each polygon bounded by
a finite nudoer of finite sized edges, - the queue and the buffer of the
computing system will also be bounded in size. Once sensor
scalpsling is initiated by entering *' into the queue, the process P W -
MNG enters a wait state. At this time the process CONTROL cannot
be in the wait state indefinitely, as it will eventually read * and come
QM of wait state. After the process CONTROL returns the sensor
data, the process PLANNING comes out of waiting state. Similarly,
when process CQNTROL is waiting, the process PLANNING will not
be waiting indefinitely as it will eventually read the contenrs of the
buffer and come out of waiting state. Hence the system should be
free. of deadlocks and starvation.

4. FERFORnANCE ANALYSIS
The performance of concurrent processes described in the pre-

vious section can be analyzed using four time measures, namely, the
travel-time, sensor-time, update-rime, and plan-time for each path
I % Q ~ the source point S to the destination p i n t D . Each path from
S tc D i s characterized by the 'ordered' sequence of polygons,
S *=cp 1,~22,...gk>~ h a t i s eccountered as &e robot uaverses from S
to D . Let si and di xqpsent the source and destination points,
~spctivelgr, eomcsponding to 'he polygon pi. Then the path from S
to D Is also qmsente8 as h e ordered sequence given by
cs 1 9 2 ,..., Sk,dk>> and ais0 Si+l=dj, fox i=1>29...$c-1).

Tne travel-rime, 7 ' ~ i s given by 7 T$(pi), whew Tt@i) is the

time taken by the robot to travel from s; to di. Sf pi is a free-
polygon, then Tg@j) is the time taken by the robot to Eravel from sj
straight to 4 . If p ; is an obstacle-polygon, then Tt@i) is the time
taken by the robot to travel from si to d; via the smaller path among
?he two paths h a m s; to di along the edges of the polygon pi. The
pinsin factor that decides TT is the formation of various polygons,
wPic3r in turn depends on the paths traversed so far.

k

83

The sensor-time, T.5, i s given by 7 TsS@i)> where TS@i) is the

time needed to scan the unexplored polygon p i . If pi is either a
free-polygon or an obstacle-polygon with respect to si, then ",(pi) is
zero. 'kame value of Ts degends on the profile and location of the
various explored and unexplored polygons.

k

,e1

The updatetime, Tu is given by T&), where Tu@i) is the

time needed to update the information about the polygon p i , based
on the sensor data. As in the earlier case, TpJ@j) is zero tfgi is either
a he-plygon or an obstacle-polygon with respect to si. If pi is an

k

&

1140

unexplored-polygon, then T,@i) includes the time needed to divide
pi into visible and invisible regions, and again'to divide the visible
region into obstacle-polygons and free-polygons. It also includes the
time needed to merge the free-polygons to form bigger free-
polygons. This factor not only depends on the profile and the loca-
tion of various polygons, but also on the data structures and algo-
rithms used for implementing the terrain model.

The plan-he, Tp, is given by Tp@i), where Tp@i) is the

time required to plan a path from si to di, given that pi is either a
free-polygon or an obstacle-polygon. If pi is a free-polygon, then
T&) is the time required to find the intersection point, di, of pi
with the line joining si to D. If pi is an obstacle-polygon with
respect to si, then Tp(pi) includes the cost of planning the shorter
path along the edges of pi . Like the update-time, this parameter
depends on the algorithms and data structures used to implement the
terrain model, as well as on the profiles and locations of various
polygons.

The time taken for the robot to travel from the souce point S to
the destination point D is a function of all four times described
above.

I = .f;

THEOREM I:
The time required by the robot to traverse from S to D is
Tp@ I)+TT in the best-case.
PROOF In the best-case, every p i , of the sequence
S * =cp 1,p 2 ,..., p k > of the path from S to D , is a free-polygon.
Also, the computation of di takes less time than T&;-l), for
i=2,3, ..., k . Thus, the stop point di is computed while the robot
is on it's way to si and is kept ready in the queue before the
robot reaches si. Hence, the total time of travel from S to D is
given by:

k
T p @ l) + ~ m a x (T p @ i) , T t @ i - 1) ~ ~ ~ @ &)

=Tp @ 1 W T

This best-case time is almost equal to the travel time needed to
merely travel from S to D .

THEOREM 2:
The time required by the robot to traverse from S to D is
T~+Tp+Tv+rs in the worst-case.
PROOF: In the worst-case, every polygon pi E S *, is to be
explored. In such a case no overlap of operations is possible,
and the algorithms CONTROL and PLANNING operate in
strictly mutually exclusive manner. Hence, the time total time
of traversal from S to D is given by:

=TT+Tp+Tu+Ts 0
In general, the actual travel time lies in between these two lim-

its. In the initial stages of learning, the travel time is close to that in
the worst-case. As learning proceeds, more and more polygons are
explored and the total travel time approaches the time of the best
case.

5. THE DATA STRUCTURE FOR THE TERRAIN MODEL
The performance of the concurrent processes, CONTROL and

PLANNING, depends on the plan-time, travel-time, sensor-time and
update-time for the various polygons encountered by the robot dur-
ing its traversal. Of these factors, the travel-time and sensor-time are
mainly determined by the mechanical speeds of various components
of the robot system, and, in general, are not solely conh-olled by the

model used for the obstacle termin. However, the plan-time and
update-time can be ControIled by suitably designing the terrain
model and the methods to manipulate the temain information. As
shown in the best-case analysis .of the system, even for fixed values
of the travel-time and sensor-time, the optimal performance can be
obtained by utilizing algorithms such that the condition
ma~(T ,@~) ,T ,@~-1)) = T&-l) for i=2, ..., k is satisfied. In precise
terms, we first need to obtain a good data structure for representing
the various polygons. We also need to design efficient algorithms for
performing the basic operations such as finding the intersection
points, partitioning the polygons, etc. In this section, we propose a
spatial graph model for representing the polygons that characterize
the partially explored obstacle terrain at any point of time. We use a
data structure based on a modified version of the adjacency list of a
graph. This data structure is specially suited for the operations to be
performed on the polygons. The complexities of various algorithms
are estimated and compared, in appropriate cases, to the ones based
on the conventional adjacency list for the spatial graph.

5.1. THE SPATIAL GRAPH MODEL
The set of polygons that span the obstacle terrain are collec-

tively exhaustive and mutually non-intersecting. Fig. 3 shows a par-
tially explored terrain. A spatial graph, G=(V,E), for an obstacle
terrain is constructed by representing each vertex of a polygon by a
vertex of the graph. An edge of a polygon is represented by the
corresponding edge of the spatial graph. To each vertex v E V , we
associate a pair of coordinates representing the corresponding vertex
point in the space. We note that the spatial graph is a planar graph.
Fig. 5 illustrates the spatial graph for the terrain of Fig. 3. Let d
denote the maximum number of edges meeting at a vertex of any
polygon or equivqlently the maximum degree of a node in the spatial
graph. Each polygon is represented by a plane of the spatial graph
formed by the corresponding fundamental circuit (refer to [7] for
preliminaries on graph theory).

Fig. 5 Spatial graph model for the obstacle terrain shown in

Fig. 3

53. THE MODIFIED ADJACENCY LIST
The spatial graph is implemented using a modified djacency

list data structure. The adjacency list corresponding to each node is
represented as an array of all the adjacent nodes sorted according to
the increasing values of Slopes of the corresponding edges. The
slope of any edge (v l p 2) at the vertex v i , denoted by S (V ~ V ~) , is
measured in terms of the angle subtended by the line v 1v2 to a
reference direction d Let A [v]=cv 1,v 2, . . . , v,>, v E V , r S i , for
(V ,vi) E E , i=1,2, . . x , represent the modified adjacency list
corresponding to the vertex v . Then, we define vi+l to be the next-
neighbor of vi, for i=1,2, ...,(r-I), with respect to the vertex V. The
vertex v 1 is taken to be the next-neighbour of I+. Fig. 6@) shows
the modified adjacency list s t ~ c t u r e for the spatial graph of Fig.

1141

qa). For example, A [vq], the adjacency list of the vertex v 4 is
obtained by traversing in the anticlockwise direction starting with
the direction of X. It is easy to see that the slopes of the edges
(v 4,v 3),(v 4,v ~) , (v 4,v 5),(v 4,” 6) are in the increasing order. The
next-neighbors of v 5 are v 2 and v 4 with respect to v 1 and v 2 respec-
tively. It is important to note that for every vertex vi E V , there
exist unique pair of vertices v and v, and a polygonp , such that v,
is the next-neighbor of vi and (vi,v) and (v,vj) are the edges of p ,
Refering to Fig. 6, corresponding to the vertex v 5, the unique pair of
vertices is v 2 and v4, and the polygon is p 2. If the edges (v;,v) and
(v ,vi) belong to the same polygon p , then vi and vi are adjacent in
A [VI. In the modified adjacency list we also store, for each vertex v
E V , a sorted list M[v]=cm1,m2, ... ,mm,>, such that mi =S(v,vi), for
i=1,2, ..., r . Let a polygonp be represented by the ordered set of ver-
tices C V I , ~ ~ , . . .,VI> obtained by starting with the vertex v 1 and
traversing along the edges of the p in the clockwise direction. This
set can be obtained by starting with v 1 and repeatedly finding the
next-neighbors. For example, consider the polygon p2, given by
< V ~ , V ~ . V 5>, in Fig. 6(a). The node v 5 can be reached from v 2 by
finding the next neighbor of v 2 with respect to v 4.

(a) Spatial graph

ndex adjacency list
10dc A [V I

@) Modified adjacency list

Fig. 6 Modified adjacency list for a spatial graph

Each of the subproblems involved in implementing the
spatial-graph may have efficient solutions or analogs with efficient
solutions in an environment specifically suited to that subproblem.
The field of computational geometry is replete with problems that
are similar to the subproblem discussed in this paper. The details
can be found in Ah0 et a1 [I], Lee and Preparta [13], and Mehlhom
[161. Here, we are interested in a data structure that solves the sub-
problems with reasonable over-sal8 efficiency.

53. THE COMPLEXITY ANfiUSIS
In this section, we list the various computational subtasks

involved in the execution of process PLANNING and estimate the
complexity of each of these subtasks.

(A) Path Planning Algorithms

of the following operations:
Path planning involves accessing various polygons and consists

(1) Finding the next-neighbor: One of the basic operations
needed for the various subtasks is to find the vertex vi+] that is
next to the given vertex vi, in the polygon p =

< v l , ..., vi,vi+l, . . . ,VI>. The next edge vi+l of the polygon can
be obtained by carrying out a binary search for the slope
S(vi-],vi) on the array M[vi], and then retrieving the vertex
vi+l is j t h entry in A [vi] such that, m,-1=S (vi-l,vi). The cost
of this operation is O(1ogd). It is to be noted that this cost is
0 (d) if the conventional adjacency list representation is used.
(2) Finding near-polygon: The near-polygonp of s 3 is found
as follows: Carry out a binary search on the array M (s) to
obtain the vertex v, such that m,-lSS(s a)&,. This has a
time complexity of 0 (logd). Let v,-1 and vi be the j t h and
j+l th entries in A [SI. The vertices v,+ ,vi uniquely deter-
mine the required near-polygon p , and finding of which
suffices for the line 3 of algorithm PLANNZNG. However, the
complete vertex set o f p can be obtained in O(n logd) time by
repeatedly finding the next-neighbors ,where n is the number
of vertices of the polygon p .
(3) Finding the next stop point: The computational subprob-
lem corresponding to lines 6 and 12 of algorithm PLANNING
involves finding the next stop point, Y , corresponding to the
source point s and the final destination point D . The point s is
a vertex of p and p is either a free polygon or an obstacle
polygon. If p is an obstacle polygon, then the next stop point
is computed as decribed in section 2. In such a case we find the
a vertex Y1 (of p) such that the near-polygon of Yd is dif-
ferent from near-polygon of sa by traversing along the edges
of p in clockwise direction. This can be achieved by finding
the next-neighbour v and the near-polygon of v3 at every step.
The status of the polygons can be stored by augmenting the
adjacency lists. Corresponding to rhe array
A [v]=<v 1, . . . , vi,vi+l, ..., v,>, an auxiliary may
B [v]=<b 1, . . . , b,> is stored, where bi gives the status of the
polygon given by vi,v ,vi+l. Let n denote the number of edges
of the polygon p . Thus, the computation of Y 1 has 0 (n) such
steps and each step costs O(logd). Thus the complexity of
finding the point Y 1 is 0 (n logd). The other point Y 2 obtained
by traversing along anti-clockwise has the same complexity. If
p is a free polygon the next stop point is the intersection point
Y of the line joining the source point s to the final destination
point D with the polygon p . The point Y can be computed by
starting with the vertex s, and repeatedly findin the next-
neighbors until an edge that intersect the line s if is found.
Thus the complexity of this is 0 (nlogd), because the next-
neighbors are found 0 (n) times.
(4) Finding shorter path: If the currently accessed polygon p
is an obstacle-polygon, then the next stop point Y is to be com-
puted as in line 13 of process PLANNING. The distance
corresponding to the path to the potential stop point Y1 - via
the Vertices encountered while traversing along the edges of p
in the clockwise direction - is computed during the computa-
tion of Y1 as explained above. This has h complexity of

0 (nlogd). The distance companding to the other path to Yz
- via the vertices encountend whiie rravelling along the anti-
clockwise direction - is compted in the same fashion. This
also has the complexity of 0 (nlogd). Then the path to Y
corresponding to the minimum length is chosen. Hence, the
complexity of finding the minimum path is O(n1ogd). In
some cases the criterion for choosing the path could be the
number of vertices, total number of changes in the direction,
total amount of change in the direction, etc. These values can
also be computed in 0 (nlogn) time, by storing the relevent
information in the corresponding adjacency lists.

(B) Learning Algorithms
Line 18 of process PLANNING describes very important sub-

task namely learning. Learning is important in two ways. First, it
implements the most important feature of the proposed method.
Second, the time spent in this task directly adds to the total travel
time for the robot. In this phase of navigation, the currently accessed
polygonp is modifed based on the Sensor data obtained from process
CONTROL. As explained earlier the process of update has two con-
stituents: a) partitioning the unexplored polygons, b) combining the
free-polygons. The step a) involves partitioning the polygon p into
visible and invisible parts with respect to s , and also partitioning the
visible parts into free-polygons and obstacle-polygons. In either
case, the basic operations would be an addition of a new vertex, say
v , on an edge, and an addition of a new edge, say (v 1,v 2). The pm-
cess of merging the free-polygons to form bigger free-polygons
involves deletion of vertices and edges.

(1) Insertion and deletion of vertices and edges: Let the ver-
tex v be created on the edge (v l,v2). This can be camed out
by ovexwriting v 2 by v in A [v 11, and overwriting v 1 by v in
A [v 11, and then creating A [VI and M[v] with two entries
corresponding to v 1 and v2. Complexity of this process is
0 (Iugd). Addition of a new edge (v 1,vz) can be carried out by
entering by entering v 2 into A [v 11 and M [v 11, and also v 1 in
A [v 21 and M [v 21. Searching for the respective value in the
arrays A and M has the complexity of O(logd) . However,
entering a new value might involve shifting all the elements of
the corresponding arrays. Hence, the complexity of addition of
a new edge is 0 (d). Similarly, the complexity of deleting an
edge is 0 (d). The deletion of a vertex v involves deletion of
all the edges incident on v , and thus has the complexity of
0 (d2).
(2) Decomposition of polygons: Let the sensor data introduce
k new edges for partitioning unexplored polygon into visible
and obstacle polygons. A polygon p 1 whose interior is visible
froma vertex may not be convex because the angle included by
vertices may not be less than IC (as shown in Fig.7(a)). The
vertex v from which the polygon is visible is joined to each
vertex v (of p 1) such that the included angle at v 1 is not less
than x as shown in Fig.7@). If v is the only vertex with
includes angle not less than IC, then v is joined to one of the
other vertices. Such a decomposition of the visible polygons
always results in convex polygons because all the included
angles are made less than x. This decomposition process can
introduce O (n) edges, where n is the number of edges of the
unexplored polygon. Hence the complexity of partitioning the
polygon has the complexity of 0 ((k+n)d) .
(3) Merging of free-polygons: When the new free polygons
are created, we examine all the neighbor free polygons to find
out if they can be. merged with the new ones to form bigger free
polygons. In general there could be overlapping subsets of free
polygons that could be merged. In such case the merging could

(a) The polygon p 1 is visible from v but not convex

(b) The polygon is decomposed into convex polygons p f and
p f byjoiningv m v l

Fig. 7 Decomposition of visible plygon

be carried out according to a stategy that the resultant number
of free polygons is minimum. There have been efforts to design
a free-polygon merging algorithm that has a worst-case time
complexity bemr than the brute-force of exhausting all the
combinations of polygons. This problem is currently being
pursued by the authors. The resultant merged free-polygon has
to have the largest area among all the cambinations of the
given free polygons. The complexity of the exhaustive
enumeration method is O(PK+pnIogd), where K is the cost
of computing the area for the given choice of free-polygons, p
is the number of polygons to be merged, and n is the number of
edges of the biggest polygon among the polygons to be
merged. The first factor corresponds to the cost of computing
the areas for all the combinations of polygons, and Second fac-
tor corresponds to merging the selected polygon combination.
Though the complexity of this phase is high, in situations
where there are only a few polygons to be merged this algo-
rithm gives reasonable results. However, the authors feel that
there could be efficient solutions to this problem.

5. CONCLUSIONS
The capability to learn is essential to an intelligent autonomous

mobile robot navigating in an unexplored terrain. An efficient navi-
gation technique has been developed by the authors [10,11] to incor-
porate learning in a robot navigating in an unexplored terrain. As a
part of learning, the robot gradually builds the terrain model as it
undeaakes a number of goal-directed traversals. Consequently, the
paths of navigation undertaken by the robot become closer to glo-
bally optimal paths, as learning proceeds.

In this paper we propose a technique for autonomous robot
navigation in terms of a system of concurrent processes mnning on
the computing system of the robot. This system is shown to be free
from deadlocks and staryation. The performance analysis of the con-
current processes reveals that the various path planning and learning
operations have to be expedited in order to reduce the time of navi-
gation for any path. This neccessitates an obstacle terrain model that
efficiently supports all the operations involved i n path planning and

I143

learning. A modified adjacency list data structure is proposed for the
obstzcle terrain model. This data structure is proven to be efficient
in supporting the operations to be performed on the terrain model.
The complexities of various algorithms for manipulating the terrain
model are estimated. These algorithms are currently being imple-
mented on a hypercube computing machine mounted on HERMIES-
I1 at Oak Ridge National Laboratory.

REFERENCES
AHO, A., J. HOPCROFT, and J. ULLMAN, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading,
Mass., 1974.
BROOKS, R. A., Solving the Find-path Problem by G o d
representation of Free-space. IEEE Trans. Systems, Man
and Cybernetics, Vol. SMC-13, No. 3, MarcWAprill983.
BROOKS, R. A., and T. LOZANO-PEREZ, A Subdivision
Algorithm in Configuration Space for Path with Rotation.
IEEE Trans Systems, Man and Cybernetics, Vol. SMC-15,
No. 2, MarcWApril 1985, pp. 224-233.
CHATILA, R., Path Planning and Environment Learning in a
Mobile Robot System, Proc. European Conf. Artificial Intelli-
gence, Torsey, France, 1982.
CHA'ITERGY, R., Some Heuristics for the Navigation of a
Robot. The Int. J. Robotics Research, Vo1.4, No. 1, Spring

CROWLEY, J. L., Navigation of an Intelligent Mobile Robot,
IEEE J. Robotics Reseach, Vol. RA-1, No. 2, March 1985,

DEO, N., Graph Theory with Applications to Engineering and
Computer Science, Prentice-Hall, New York.
GIRALT, G., R. SOBEK and R. CHATILA, A Multilevel
Planning and Navigation System for a Mobile Robot, Proc. 6th
Int. Joint Conf. Artifrcial Intelligence, Aug 20-23, 1979,
Tokyo, pp. 335-338.

1985, pp. 59-66.

pp.31-41.

GOUZENES, L., Strategies for Solving Collision-free Trajec-
tories Problems for Mobile and Manipulator Robots, The Int.
J. Rabotics Research, Vol. 3, No. 4, Winter 1984, pp. 51-65.
S. S . WENGAR, C. C. JORGENSEN, S. V. N. RAO, and C. R.
WEISBIN, Robot Navigation Algorithms Using Learned Spa-
tial Graphs, ORNL Technical Report TM-9782, Oak Ridge
National Laboratory, Oak Ridge, August 1985. to appear
Robotica.
S . S. NENGAR, C. C. JORGENSEN, S . V. N. RAO and C. R.
WEISBIN, Learned Navigation Paths for a Robot in Unex-
plored Terrain, Proc. 2nd Conf. Artificial Intelligence Applica-
tions and Engineering of KnowIedge Based Systems, Miami
Beach, Florida, December 11-13,1985.
LAUMOND, J., Model Structuring and concept Recognition:
Two Aspects of Learning for a Mobile Robot, Proc. 8th Cog.
Artifiial Intelligence, August 8-12, 1983, Karlsruhe, West
Germany, p. 839.
LEE D.T., and F. P. PREPARATA, Computational Geometry -
A Survey, IEEE Trans. Computers, Vol. c-33, No. 12,
December 1984, pp. 1072-1101.
LOZANO-PEREZ, T., Spatial Planning: A Configuration
Space Approach, IEEE Trans. Computers, Vol. C-32, Febm-

LOZANO-PEREZ, T., and M. A. WESLEY, An Algorithm for
Planning Collision-free Paths Among Polyhedral Obstacles,
Commun. ACM, Vol. 22, No. 10, October 1979, pp. 560-570.

ary 1983, pp. 108-120.

1161 MEHLHORN, K., Data Structures and Algorithms 3: Multidi-
mensional Searching and Computational Geometry, EATCS
Monographs on Theoretical Computer Science, Springer-
Verlag, Berlin, 1984.

[17] MORAVEC, H. P., The CMU Rover, Proc. Nut. C o f .
Artificial Intelligence, August 1982, pp. 377-380.

[18] NILSSON, N.J., Mobile Automation: An Application of
Artificial Intelligence Techniques, Proc. 1st Int. Joint Conf.
Artificial Intelligence, May 1969, pp. 509-520.

[19] THOMPSON, A. M., The Navigation System of the JPL
Robot, Proc. 5th Int. Joint Conf. Artifrcial Intelligence, August
22-25,1977, Cambridge, Mass., pp. 749-757.

[20] TURCHEN M. P., and A. K. C. WONG, Low Level Learning
for a Mobile Robot: Environmental Model Acquisition, to be
published in Proc. 2nd Int. Conf. Artificial Intelligence and Its
Applications, December 1985.

1211 UDUPA, S . M., Collision Detection and Avoidance in Com-
puter Controlled Manipulators, Proc. 5th Int. Conf. ArtiJcial
InteIIigence, Massachusetts Institute of Technology, Cam-
bridge, Mass., August 1977, pp. 737-748.

[22] WEISBIN C. R, J. BARHEN, G. DeSAUSSURE, W.R.
HAMEL, C. JORGENSEN, E.M. OBLOW, and R. E. RICKS,
Machine Intelligence for Robotics Applications, Proc. 1985
Cony? Intelligent systems ans Machines, April 22-24, 1985.

1144

